US009098566B2

a2 United States Patent 10) Patent No.: US 9,098,566 B2
Srinivasan et al. 45) Date of Patent: Aug. 4, 2015
(54) METHOD AND SYSTEM FOR PRESENTING OTHER PUBLICATIONS
RDF DATA AS A SET OF RELATIONAL K. Stoffel, M. Taylor, J. Hendler. Efficient Management of Very Large
VIEWS Ontologies. AAA/MIT Press 1997.

Zhengxiang Pan, Jeff Heflin: DLDB: Extending Relational Data-
bases to Support Semantic Web Queries. PSSS 2003.

(75) Inventors: Jagannathan Srinivasan, Nashua, NH S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis &
(US); Yongmei Xie, Beijing (CN); K.Tolle, On Storing Voluminous RDF Description: The case of Web

Jayanta Banerjee, Nashua, NH (US) Portal Catalogs, WebDB 2001. _
W.Teswanich, S,Chittayasothorn, “A Transformation of RDF Docu-
(73) Assignee: ORACLE INTERNATIONAL ments & Schemas to Relational Databases”, IEEE PacificRim Con-
ferences on Communications, Computers, & Signal Processing,

CORPORATION, Redwood Shores, 2007.

CA (US) S. Ramanujam, A. Gupta, L. Khan, S. Seida, B. M. Thuraisingham:
R2D:Extracting Relational Structure from RDF Stores. Web Intelli-

(*) Notice: Subject to any disclaimer, the term of this gence 2009: 361-366.
patent is extended or adjusted under 35 S. Ramanujam, A. Gupta, L. Khan, S. Seida, B. M.

U.S.C. 154(b) by 983 days. Thuraisingham:R2D: 4 Bridge between the Semantic Web and Rela-
tional Visualization Tools. ICSC 2009: 303-311.
Souripriya Das, et al. ED, “R2RML: RDB to RDF Mapping Lan-
21) Appl. No.: 13/114,965 PILy ’ ’ pping
@D ppi. O ’ guage,” Oct. 28, 2010, http://www.w3.0rg/Tr/2010/WD-12rml-
20101028/ (22 pages).

(22) Filed: May 24, 2011 Marcelo Arenas, et al. Ed, “A Direct Mapping of Relational Data to

RDE,” Mar. 24, 2011, http://www.w3.0rg/TR/2011/WD-rdb-direct-

(65) Prior Publication Data mapping-20110324/ (18 pages).
Soren Auer, et al., Ed, “Use Cases and Requirements for Mapping
US 2012/0303668 Al Nov. 25,2012 Relational Databases to RDF,” Jun. 8, 2010, http://wvvw.w3.org/TR/
rdb2rdf-ucr/ (20 pages).

(51) Int.CL .
GO6F 17/30 (2006.01) (Continued)
(52) US.CL . .
CPC ... GO6F 17/30604 (2013.01); GO6F 17/30292 ~ Primary Examiner — Alexey Shmatov
(2013.01) (74) Attorney, Agent, or Firm — Vista IP Law Group, LLP

(58) Field of Classification Search

CPC oo GOGF 17/30569; GOGF 17/30604; (57) ABSTRACT
GO6F 17/30292 Disclosed is an approach for presenting RDF data as a set of
USPC e 707/792, 756 relational views. By presenting the RDF data as relational
See application file for complete search history. views, this permits integrated access to the RDF-based data
from existing relational database tools, such as by asserting
(56) References Cited SQL queries against the relational views. One or more classes

are identified within the RDF data, wherein a relational view

U.S. PATENT DOCUMENTS of'the set of the relational views maps properties relating to a

8,078,646 B2 122011 Das etal. particular class.
2006/0235823 AL* 10/2006 Chong etal. ..occcococmrn.... 7071
2011/0225167 Al* 9/2011 Bhattacharjee et al. 707/747 41 Claims, 13 Drawing Sheets
L2108
s T ot

Ny sdoled rdéfuype avudent ": -
WBoha R 18 e
WA rdlEepe stk 4T
SER s 0
HrliadQf dabs ¥

Presgitoy Muoier
kabor e
sfise choasBusiviun <CEQ

2 282 >
kS %
280 Swdent | Age Studentt Shatent2 -
- 8 - e s
20 S ey ’
T Mary MNUAL Frimpdf View 204

Student Visw 402

US 9,098,566 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

“Relational Databases on the Semantic Web,” Sep. 1999, http://www.
w3.org/Designlssues/RDB-RDF.html (6 pages).

Satya S. Sahoo, et al. “A Survey of Current Approaches for Mapping
of Relational Databases to RDE,” Jan. 8, 2009, http://www.w3.org/
2005/Incubator/rdb2rdf/RDB2RDF Survey Report (15 pages).
Ashok Malhotra, Ed, “W3C RDB2RDF Incubator Group Report,”
Jan. 26, 2009, http://www.w3.0rg/2005/ir batorirdb2rdf/ XGR-
1db2rdf-20090126/ (6 pages).

RDB2RDF W3C Standards and Notes, Accessed Jul. 1, 2013, http://
www.w3.0rg/2001/slerdb2rdfi (3 pages).

Deborah L. McGuinness, et al. Ed, “Owl Web Ontology Language,”
Feb. 10, 2004, http://www.w3.org/TR/owl-features/ (15 pages).
Frank Manola, et al. Ed, “RDF Primer,” Feb. 10, 2004, http://www.
w3.org/TR/rdf-primes/ (89 pages).

“RFD 2396: Uniform Resource Identifiers (URI): Generic Syntax,”
Aug. 1998, http://www.ietf.org/rfc/rfc2396.txt (28 pages).

Dan Brickley, etal., Ed, “RDF Vocabulary Description Language 1.0:
RDF Schema,” Oct. 2, 2004, http//www.w3.org/TRIrdf-schema/ (21

pages).

* cited by examiner

US 9,098,566 B2

Sheet 1 of 13

Aug. 4, 2015

U.S. Patent

st S e,

P,
o ~,

e
o

,.A.\-

i
SRR

el wep
IO

¥

& FLL MM RUONRSN o
i8S

AR] P talid TS o IS

_— s b
80 Peueiey sdsludsl
Z)

g

L 3

63

U ERN R
O A0

[
e ¥ 4
e

LoL

oDt

1 aanfirg

US 9,098,566 B2

Sheet 2 of 13

Aug. 4, 2015

U.S. Patent

P02 MBI

ZO7 MEA RIBDTS

Hapusiig T

Wi

Aaepg b,

o Ay

-

4

T .

e\4\\.
LT i Py

g

snor B A

9T ZRBPNIG

juspng

wapmg

_,..w %
s,

Fe P w/..c,. o, w...\f. ¥4
LF < 4 A oee
s % i a3

5% i

P! i

k3 ¢

i i

A

VE0) HOBEe IR

FIVAY AR08
axfvuepy somsogey

B IOFORIEIT
e AEERG PR
Hs..,%% wapmsr sdippa
e WHOES OPUMIE
S | e
x&ﬂuﬁwm@ﬁﬁﬁ adigpa
e B ai

s

, ;%.,z# smagagn addpgpe

wry
BETES
R
AN
gy

DR {720
i
i
1138
wyop
wyeE:

BET e
e o
s e

212 e a
AV AR,
\To\lt\r:.\\u\.\\‘s 5\\4\"\7.\\

X et
1 %

31174

US 9,098,566 B2

Sheet 3 of 13

Aug. 4,2015

U.S. Patent

G0y woays Alenb gunuag

50g (S}MEIA

IRUDNRISE B O] BIBD KT dew

£08
shaa0d O] BIBR 400 Alusp

L 8l mmm 4

US 9,098,566 B2

Sheet 4 of 13

Aug. 4, 2015

U.S. Patent

a1y seydu peddewun
ha@m,,cﬁ.um%mw3&»@“@@%@

4

w1 sstusdosd pampa-gni
303 {RIUDIBULRTR ABIA BIRIGUSE

t

iy SB8SE DhuaH
0} {RIOBIILOD MOP DIIBURS

0 b SUCIILEED MO BB

)

ST SOSEIE B0

i

Qg SHIHEA
Auadod pue sepedosd Anuep

i

POb SHRSEN Ampn:

2O MEpRIBL BRI

y 8By

US 9,098,566 B2

Sheet 5 0of 13

Aug. 4, 2015

U.S. Patent

g 8nbig

N

e
e d

SRR

JINGTY SEHD

BBy

0% OO Arney

Y37y smHgso e
IR HLIRIR
safleuviAly BOUEOSRE

IRICYS 40

Adegs
PSP
By

174
JEAPIINL

Bi
IRIPRIST

HPULg
addyppar
Jopuaup

adingps
A
adapyps

zsy
Lk 8 2
Rletin g
P
153
Asugyy
B
ity
i
wyop:
uygoqs

¢4

I wspae ;
! FUEPSX i

w Opuag
*w ¢ adn

o

US 9,098,566 B2

393 wm Fuvy ey wg Mw_mm wgmay dony | ApadaLg

Sheet 6 of 13

Allg. 4, 2015

U.S. Patent

| | ~ h %)
rs & r E - J :

oz8° s18’ g

{YE¥ uenpogsng
ABA(Y IOJNRIOMS
salinnups sonIsagRRy:
JIVACE MLEIRIOMT Ay
LELI TR Ty S E
wapays: addngpn A

2] muﬁmu& BgofT MOpueMp I
{7 o amEl e
mapagss addpgpe -
R1 ¥E wgoep o0z
juapras: adApgps umep:

US 9,098,566 B2

Sheet 7 of 13

Aug. 4, 2015

U.S. Patent

2 aunbiy

Ayep

i
. e
WY w4 vapmy

TOL HOLBYAC] WAty

(Y Bonmogeeyg myyy
JAVHY GGERION BEFTL
sadfeavpy wopsa ey
M) g R
AT ORI
mapass sdanpe
wgeet ORI
gy ¥m

LR L ;
®i
JUBPHST

e
qHoL
Wy

A

Q0

US 9,098,566 B2

Sheet 8 of 13

Aug. 4,2015

U.S. Patent

hawgg

FHRRMT LRIBDIMG 1//

R

3

SYAY BOIBO e TR
AIRIY A

LY L SR 1 -
wpams adapgpar L !//
Byegs pOPpEIAR i o
B , e e FE S
FBIPBIET {3 T

wer uyeyps
adagyps ugey:

US 9,098,566 B2

Sheet 9 of 13

Aug. 4, 2015

U.S. Patent

yie say
AR LA A .ewwm&m*mmwmv

[2

Zig sadig
ma i eiep uewling

TO6 M8 RUOHRIR
oy syep paddeumn dew

E 3

&

L6 8 sieay

06 ¥
DU Wi See Ag
DEIBAGD BIBD DRNONG

£16 ainbig

v6 sanbiy

US 9,098,566 B2

Sheet 10 of 13

Aug. 4, 2015

U.S. Patent

FO0L vaa seidy peddewsun

QR | uopsodsey BEIY

BICY. IOPICH BEIT

mbeugpy | uogmodsey DAY

WOy SEERIAL SR

LT (g SEPSIY josfgng

01 8nbig

US 9,098,566 B2

Sheet 11 of 13

Aug. 4, 2015

U.S. Patent

aaanydury adiyps
sakapdiap adiype
£330 Bopgsgaeg
AFEALIE FDINLIBRL
TeunIyt BUNBOSNp
IPIBAY FDIRIDN!
AIBEAT JOPUILE
pope wdigpa
HOE 0P

&
papms adiugp
%1 sde:

smapmgs: addigns

BSOR
R
218 B
E e T
g

RSB

g4
Hips
i
wyey
wyay:

1} anbig

OALy wnapagseys
JPHLHR FRERLI0M
FREBBIAL BURISU AN
AIWIY IWJOLIBBT

ARy HOpEN
mapuy: adipgpa
Lt 2 RO ¥ L

47 sde;
wmopms: sy
% Hu:

wepnys: addngps

ey
AR
AR
L1 8
LR YT
i
e
i g
HRG
Bgnes

US 9,098,566 B2

Sheet 12 of 13

Aug. 4, 2015

U.S. Patent

050 BN BRI
saleuspy BRIy TN
HOIHSDISRY IO4SHIAR el safopdung

2} ainbid

US 9,098,566 B2

i anim,,

Py
Tl A

LT

A %

SR 13

ey

%,
AN
:

Sheet 13 of 13

Aug. 4, 2015

Fy Y * -
FIAMY
i & % ey
2 43
£y & &
¥ k4 k 4

ANABOW
WYY

U.S. Patent

it

L

sy

US 9,098,566 B2

1
METHOD AND SYSTEM FOR PRESENTING
RDF DATA AS A SET OF RELATIONAL
VIEWS

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

BACKGROUND

RDF is a widely-used language that was originally devel-
oped for representing information (metadata) about resources
in the World Wide Web. It may, however, be used for repre-
senting information about absolutely anything. When infor-
mation has been specified using the generic RDF format, it
may be consumed automatically by a diverse set of applica-
tions.

There are two standard vocabularies defined on RDF: RDF
Schema (RDFS) and the Web Ontology Language (OWL).
These vocabularies introduce RDF terms that have special
semantics in those vocabularies. For simplicity, in the rest of
the document, our use of the term RDF will also implicitly
include RDFS and OWL. For more information and for a
specification of RDF, see RDF Vocabulary Description Lan-
guage 1.0: RDF Schema, available at www.w3.org/TR/rdf-
schema/, OWL Web Ontology Language Overview, available
at www.w3.org/TR/owl-features/, and Frank Manola and
Eric Miller, RDF Primer, published by W3C and available in
Sept., 2004 at www.w3.org/TR/rdf-primer/. The RDF
Vocabulary Description Language 1.0: RDF Schema, OWL
Web Ontology Language Overview, and RDF Primer are
hereby incorporated by reference into the present patent
application.

Facts in RDF are represented by RDF triples. Each RDF
triple represents a fact and is made up of three parts, a subject,
apredicate (sometimes termed a property), and an object. For
example, the fact represented by the English sentence “John
is 24 years old” can be represented in RDF by the subject,
predicate, object triple <’John’, ‘age’, ‘24’>, with ‘John’
being the subject, ‘age’ being the predicate, and ‘24’ being the
object. In the following discussion, the values in RDF triples
are termed lexical values.

With RDF, the values of predicates must ultimately resolve
to lexical values termed universal resource identifiers (URIs),
and the values of subjects must ultimately resolve to lexical
values termed URIs and blank nodes. A URI is a standardized
format for representing resources on the Internet, as described
in RFD 2396: Uniform Resource Identifiers (URI): Generic
Syntax, www.ietf.org/rfc/rfc2396.txt. RFD 2396 is hereby
incorporated by reference into the present patent application.
In the triples, the lexical values for the object parts may be
literal values. In RDF, literal values are strings of characters,
and can be either plain literals (such as “Immune Disorder”)
or typed literals (such “2.4”"" Axsd:decimal). The interpreta-
tions given to the lexical values in the members of the triple
are determined by the application that is consuming it. For a
complete description of RDF, see Frank Manola and Eric
Miller, RDF Primer, published by W3C and available in
September 2004 at www.w3.org/TR/rdf-primer/. The RDF
Primer is hereby incorporated by reference into the present
patent application.

10

15

20

25

30

35

40

45

50

55

60

65

2

In contrast to the URI approach of RDF data, relational
database management systems (RDBMSs) store information
in tables, where each piece of data is stored at a particular row
and column. Information in a given row generally is associ-
ated with a particular object, and information in a given
column generally relates to a particular category of informa-
tion. For example, each row of a table may correspond to a
particular employee, and the various columns of the table may
correspond to employee names, employee social security
numbers, and employee salaries. A user retrieves information
from and makes updates to a relational database by interact-
ing with a RDBMS application. Queries that are submitted to
the RDBMS server must conform to the syntactical rules of a
database query language, where one popular database query
language, known as the Structured Query Language (SQL),
provides users a variety of ways to specify information to be
retrieved from relational tables.

Relational-based systems are the most common commer-
cially available database systems now being used today. As
such, there is a deep pool of existing relational-based tools
and products that are now owned or used by organizations and
individuals to access and analyze the relational data. How-
ever, because these tools are designed to work with relational-
based data, such tools cannot be used to directly access and
analyze the RDF-based data. The problem is that more and
more data are being placed into RDF-based databases every-
day. For example, RDF/OWL repositories are increasingly
being created by government agencies, e.g., Data.gov,
SNOMED, and DBPedia.

Therefore, there is a need for an improved approach for
allowing integrated access to RDF-based data from rela-
tional-based tools.

SUMMARY

Some embodiments of the present invention are directed to
an approach for presenting RDF data as a set of relational
views. By presenting the RDF data as relational views, this
permits integrated access to the RDF-based data from rela-
tional tools.

Further details of aspects, objects, and advantages of the
invention are described below in the detailed description,
drawings, and claims. Both the foregoing general description
and the following detailed description are exemplary and
explanatory, and are not intended to be limiting as to the scope
of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example system according to an
embodiment of the invention.

FIG. 2 illustrates RDF data presented as relational views
according to an embodiment of the invention.

FIG. 3 shows a flowchart of an approach for presenting
RDF data as relational views according to an embodiment of
the invention.

FIG. 4 shows a more detailed flowchart of an approach for
presenting RDF data as relational views according to an
embodiment of the invention.

FIG. 5 illustrates identification of metadata for class infor-
mation according to an embodiment of the invention.

FIG. 6 illustrates identification of metadata for property
information according to an embodiment of the invention.

FIG. 7 illustrates formation of a view definition for a class
according to an embodiment of the invention.

FIG. 8 illustrates formation of a view definition for multi-
valued property according to an embodiment of the invention.

US 9,098,566 B2

3

FIGS. 9A and 9B illustrate flowcharts of approaches for
presenting unmapped RDF data as relational views according
to an embodiment of the invention.

FIG. 10 illustrates a view of unmapped triples according to
an embodiment of the invention.

FIGS. 11 and 12 illustrate an approach for mapping
unmapped RDF triples according to an embodiment of the
invention.

FIG. 13 depicts a computerized system on which an
embodiment of the invention can be implemented.

DETAILED DESCRIPTION

Some embodiments of the present invention are directed to
an approach for presenting RDF data as a set of relational
views. By presenting the RDF data as relational views, this
permits integrated access to the RDF-based data from rela-
tional tools.

FIG. 1 shows an architecture of a system 100 for presenting
RDF data as relational views according to some embodiments
of the invention. System 100 may include one or more users
atone or more user stations 102 that operate the system 100 to
use a database tool 118 to access and analyze data in a data-
base 110. The users at user station 102 correspond to any
individual, organization, or other entity that uses system 100
for utilizing database tool 118. User station 102 comprises
any type of computing station that may be used to operate or
interface with DBMS 118. Examples of such user stations
102 include for example, workstations, personal computers,
or remote computing terminals. User station 102 comprises a
display device, such as a display monitor, for displaying
information and data to users at the user station 102. User
station 102 also comprises one or more input devices for the
user to provide operational control over the activities of sys-
tem 100, such as a mouse or keyboard to manipulate a point-
ing object in a graphical user interface.

RDF data 130 and/or relational data 132 may be stored in
database 110 on one or more computer readable mediums or
storage devices. The computer readable storage devices com-
prise any combination of hardware and software that allows
for ready access to the data within database 110. For example,
the computer readable storage device could be implemented
as computer memory or disk drives operatively managed by
an operating system.

As previously discussed, the RDF data 130 is formatted
using the RDF language such that facts in this language are
represented by RDF triples. Each RDF triple represents a fact
and is made up of three parts, a subject, a predicate, and an
object.

The database tool 118 that seeks to access the RDF data
130 may be an application or software that is configured to
operate with, and expects to see, only relational data. For
example, the database tool 118 may be existing relational
publishing, reporting, or business intelligence (BI) tools. A
user at user station 102 may wish to use the existing rela-
tional-based database tools 118 to access the RDF data 130 in
addition to the relational-based data 132.

According to some embodiments of the invention, a RDF
to relational view converter mechanism 130 is provided to
present the RDF data 130 as a set of one or more relational
views 112. In relational database systems, a “view” is a set of
data based on a query that can be accessible as if'it is a virtual
table composed of the results of the query. The view may be
either a materialized or a non-materialized view, in which the
materialized view results in an instantiation of the view as a
stored database object. By presenting the RDF data 130 as a
set of relational views 112, this effectively allows the data

10

25

30

40

45

4

within relational views 112 to be visible in a relational format
(i.e., the data in relational view 112 organized into rows and
columns), and hence accessible to the relational-based data-
base tools 118. This is because even though database tools
118 can only operate upon relational data, these database
tools 118 can now analyze the RDF data 130 since the RDF
data 130 is now presented as relational data within relational
views 112.

FIG. 2 illustrates this concept of presenting RDF data as a
set of relational views. This figure shows RDF data 200, in
which the RDF data 200 is organized as a set of RDF triples.
A typical relational-based database tool will be unable to
adequately operate upon the RDF data 200, since this data is
not organized with a tabular format having consistent rela-
tionships between the rows and columns.

According to some embodiments of the invention, a very
efficient approach can be taken to present or convert some or
all of the RDF data 200 into relational views 202 and 204,
such that the relational views present the RDF data as orga-
nized sets of relational data.

In particular, the present embodiment takes advantage of
certain classes or types of data that are self-identified within
the RDF data 200, and uses that identification of a class or
type to populate the relational views. For example, data items
210, 212, and 214 within RDF data 200 all identify certain
subjects as belonging to the same class “:student”. Each of
these identified classes can then be used to create a relational
view that is based upon these classes. Here, this identified
class “:student” would correspond to a view 202 to hold data
about the members of this class. The columns in this view 202
would include a first “student” column 240 to store the subject
identification (or primary key) for the students in the view
202. Additional rows would exist in view 202 to hold single-
valued properties of the subjects in view 202. For example,
column 242 includes the value for the “age” property for each
subject in the view 202. Each row in view 202 would corre-
spond to a different subject/student from the set of RDF data
200.

Here, row 250 in view 202 corresponds to the subject
“:John” from RDF data item 210. The “age” property 242 for
the “:John” subject is identified from the RDF data item 216.
Similarly, row 252 corresponds to the subject “:Jill” from
RDF data item 212. The “age” property 242 for the “:Jill”
subject is identified from the RDF data item 218. Likewise,
row 254 corresponds to the subject “:Mary” from RDF data
item 214. The value of the “age” property 242 for the “:Mary”
subject is “NULL”, since this subject does not have an RDF
data item that corresponds to this attribute.

There may be certain items within RDF data 200 that relate
to multi-valued attributes for the subjects of view 202. For
example, RDF data items 220 and 222 both identify different
values for the attribute “friendsof™ for the subject “:Jill”. In
particular, RDF data item 220 identifies “:John” as a
“friendof” the subject “:Jill”. Similarly, RDF data item 222
also relates to “:Jill”, and identifies “:Mary” as a “friendof”
the subject “:Jill”.

The multi-valued attributes for the subjects of view 202
may either be stored into the main view 202 or placed into a
separate multi-valued view 204. FIG. 2 shows the approach in
which values for multi-valued attribute “friendof” is placed
into a separate view 204. In particular, row 260 in view 204
corresponds to the RDF data item 220 and row 262 in view
204 corresponds to the RDF data item 222.

Certain RDF data items 224 within RDF data 200 may not
correspond to a self-identified class/type or to an attribute of
anidentified subject of aclass/type. As described below, these

US 9,098,566 B2

5

unmapped RDF triples can be handled in several possible
ways to make them separately accessible to a relational data-
base tool.

Once the RDF data 200 has been organized into these
relational views 202 and 204, any relational-based tool can
then easily access that data by asserting a SQL-based rela-
tional query against those view(s). This provides the advan-
tage of easily permitting existing relational-based tools to
access RDF-based data. Moreover, there are performance
improvements that may exist as well, since many RDF data-
bases are implemented into multiple interrelated tables that
require linking and translations between the table to obtain
the appropriate lexical values for the RDF data, which is
significantly less efficient to access than relational view such
as 202 and 204 that directly include the lexical values in the
view with built-in relationships between the lexical values of
the properties and their associated subjects.

FIG. 3 shows a high-level flowchart of an approach for
presenting RDF data as a set of relational view(s) according to
an embodiment of the invention. At 302, identification is
made of the RDF data which is to be presented as a relational
view. This may be any set of data in the RDF format which
may be accessed by a relational-based tool or product.

At 304, the identified RDF data is mapped to one or more
relational views. This action is taken to create the view defi-
nition that is used to generate the set of data to populate the
rows and columns of the one or more views. The views may
either be materialized or non-materialized views. The views
can then be accessed by any relational-based tool that expects
to operate upon relational data.

The view definitions can also be used to export subsets of
RDF/OWL data in relational formats, e.g., to export the RDF-
based relational data to embedded databases for building
semantic applications on mobile devices. Often such devices
only support SQL relational data, but not RDF data. In addi-
tion, the view definitions can be used to identify pockets of
relational structure, for which materialized views can be cre-
ated to speed up processing of SQL table function based
SPARQL queries.

At 306, one or more quality checks may be performed to
verify the effectiveness of the process for presenting the RDF
data as relational views. This action can optionally be taken as
ameasure ofhow well the transformation has performed from
the RDF data to the relational views. The results ofthe quality
check can also be used to identify and correct inefficient
transformation configurations, such that additional iterations
01 302 and 304 are performed to increase the eventual effi-
ciency of the process for transforming the RDF data into
relational views.

FIG. 4 shows a more detailed flowchart of an approach for
mapping the RDF data to relational views according to some
embodiments of the invention. At 402, metadata is created to
identify information from the RDF data that is used establish
the relational views. A “SPARQL” based declarative
approach may be performed to glean the appropriate schema
information from the RDF data. SPARQL refers to a W3C
standard that has been established as a query language for
RDF data. More details regarding the SPARQL standard can
be obtained form the W3C organization at http:/
www.w3.org/TR/rdf-sparql-query/.

In particular, at 404, the query can be issued against the
RDF data to identify classes within the RDF data. As previ-
ously noted, the classes may be self-identified within the RDF
data based on the “rdf:type” relationships in the RDF data.
Therefore, queries may be performed to identify such rela-
tionships in the RDF data.

25

30

40

45

50

55

6

In some embodiments, the class information can be gener-
ated using one or more SPARQL graph patterns. This is
illustrated in the example of FIG. 5, a query block 502 is used
to identify the classes within the RDF data 200. As previously
noted, the class “:student” is can be identified within the RDF
data 200 using the predicate “rdf:itype”. The following
example SPARQL statement can be used to identify these
classes within RDF data 200:

{?s rdf:type ?class}

In the context of a relational-based tool to generate a rela-
tional view, it is possible that this SPARQL query may need to
be embedded withina SQL statement. Table functions may be
used in some embodiments to embed such SPARQL queries
within a SQL statement. The following SQL statement uses
the term “SEM_MATCH()” to refer to a table function to
enable embedding of such SPARQL queries within a SQL
statement:

SELECT class, COUNT(*)
FROM TABLE(SEM_ MATCH(

{?s rdfitype ?class}’, SEM_MODELS(students’), null,null))
GROUP BY class

This SQL statement can be used as query block 502 to
generate the metadata 504 from the RDF data 200. In particu-
lar, this SQL statement queries the RDF data 200 (using the
SPARQL query), and identifies all classes corresponding to
the “rdfitype” predicate. This identifies the “student” class
506 within metadata 504, since the object “:Student™ is asso-
ciated with the “rdfitype” predicate in RDF data 200. In
addition, a count value 508 is made of the number of subjects
that correspond to a given class. Here, subjects “:John”,
“Jill”, and “:Mary” are all subjects associated with the “:Stu-
dent” class. Since there are three of these subjects, the count
value of “3” is placed in field 508 of metadata 504. This type
of count value is maintained in order to help decide nullabil-
ity, and quality metrics. For example, if the row count of a
table turns out to be higher than the number of values for a
subject-property combination, then the property may be nul-
lable.

Returning back to FIG. 4, at 406, additional queries may be
utilized to identify property/attribute information from the
RDF data. For example, such property information may
include information about the single value properties, nul-
lability, and the multi-valued properties for the identified
classes.

As shown in the example of FIG. 6, the property informa-
tion may be identified from the RDF data 200 using a query
block 602. Similar to the approach described with respect to
FIG. 5, the approach of FIG. 6 can also use one or more
SPARQL graph pattern(s) to obtain the property information
from the RDF data 200. In some embodiments, since they
may be regular SPARQL queries, the schema information
may be gleaned declaratively from the dataset. As before, the
query block 602 may include the SPARQL query embedded
as part of a SQL statement, e.g., within a SEM MATC_H()
table function.

Metadata 604 can be generated to identify the property
information. Metadata 604 may include a separate section/
row for each identified property of a given class. Here, row
606 corresponds to the “:age” property and row 608 corre-
sponds to the “:friendof” property (which are identified in
column 609 of metadata 620). Column 610 tracks the count of
the number of data items in RDF data 200 that correspond to
the given property.

US 9,098,566 B2

7

Column 612 identifies whether or not the property is a
multi-valued property. Here, it can be seen that the “:age”
property is a single-valued property, since each student/sub-
jectis only associated with a single age value in the RDF data
200. Therefore, a value of “0” is placed in column 612 for the
“:age” row 606 to indicate that this property is a single-valued
property. However, the “:friendof” property is a multi-valued
property, since the RDF data shows that a student/subject may
be associated with multiple friendof values (e.g., the student
“:Mary” is associated with multiple “:friendof” objects in
RDF data 200). Therefore, a value of “1” is placed in column
612 for the “:friendof” row 608 to indicate that this property
is a multi-valued property.

Column 614 states whether a column created for a table
may have null values. If there is no triple asserted for a
subject-property combination, then the corresponding col-
umn of the associated table is nullable (indicated by ‘1°,
which means “true” while non-nullable would be “0” which
means “false”). Column 618 indicates the range of values a
property may have. For example, a student’s age may only be
integers (represented with XML standard notation xsd:int),
while a student’s friend-of property may only refer to some
other student. Columns 616 and 620 indicate whether the
domain and range information have been inferred or asserted.
Ifrange was asserted through a triple (:age rdfs:range xsd:int)
then the Rg_Inf column will show a value 0, because the
range was explicitly a part of the RDF data 200. Since the
range for age had to be inferred in this example, the Rg_Inf
column is 1.

Returning back to FIG. 4, at 408, aliases may be created,
which are used to identify the relational views. For example,
aliases may be created for each identified class to correspond
to the view definition for that class. Similarly, an alias can be
created to correspond to the view definition for the identified
multi-valued properties.

At410, one or more view definitions may be created for the
identified classes and properties. In some embodiments, lexi-
cal value based relational views are generated using a SQL
table function based SPARQL queries for each of the classes
and its properties.

At 412, view definition(s) are created for the identified
classes, where a class can be mapped to a view with columns
corresponding to each of the single-valued properties that
were previously identified. As shown in the example of FIG.
7, the view definition 702 can be created to generate a rela-
tional view for the identified “:student” class from the RDF
data 200. One or more SPARQL. graph pattern(s) may be used
to query the RDF data 200 to define the subset of data from the
RDF data 200 that correspond to the identified classes and its
single-valued properties. For a NULL-able column
OPTIONAL clause is generated for matching. The view defi-
nition 702 may include the SPARQL query embedded as part
of a SQL statement, e.g., within a SEM_MATCH() table
function. The following is an example of a SQL statement
having an embedded SPARQL query that may be used as a
view definition for the “:student” class:

w

25

30

50

CREATE OR REPLACE VIEW v__Student AS
SELECT i student_ pk, Age
FROM TABLE(SEM__ MATCH(*{ i rdf:type :student .
OPTIONAL (i :Age 7Age } }7,
SEM_ MODELS(‘students”), NULL, NULL, NULL));

60

At 414, view definition(s) are created for the identified
multi-valued properties. A multi-valued property can be
implemented with maps to a two column view (subject,

65

8
object). FIG. 8 shows an example of an approach for creating
a view definition for the RDF data 200. As shown in this
example, the view definition 802 can be created to generate a
relational view for the multi-valued “:friendof” property from
the RDF data 200. One or more SPARQL graph pattern(s)
may be used to query the RDF data 200 to define the subset of
data from the RDF data 200 that correspond to this property.
As before, the view definition 802 may include the SPARQL
query embedded as part of a SQL statement, e.g., within a

0 SEM_MATCH() table function. The following is an example

of'a SQL statement having an embedded SPARQL query that
may be used as a view definition for the “:friendof” property:

CREATE OR REPLACE VIEW v__friendOf AS
SELECT s Studentl, o Student2
FROM TABLE(SEM__MATCH(*{ 7s rdf:type :student .
?s :friendOf 2?0
20 rdfitype :student}’,
SEM_ MODELS(‘students’), NULL, NULL, NULL));
NULL));

As shownin FIG. 2, after relational views 202 and 204 have
been defined for the classes and class properties, it is possible
that there remains a set 224 of one or more unmapped RDF
triples within the RDF data 200. At 416 of FIG. 4, view
definitions may be generated for the unmapped RDF triples.
There are different possible approaches that can be taken to
address the unmapped triples.

As described in FIG. 9A, one possible approach is to create
a single view to hold all of the unmapped RDF triples. This
approach is implemented, at 900, by subtracting the RDF
triples covered by the existing views from the RDF triples in
the original RDF data. At 902, the remaining RDF datais then
mapped to a special relational view that holds the unmapped
triples. The following example statement can be used to per-
form these actions to frine a view for the unmapped RDF
triples:

CREATE VIEW v_ Unmapped AS
SELECT s, p, o FROM TABLE(SEM__MATCH(*{?s ?p ?0}’,
sem__models(‘Student’), NULL, NULL, NULL))
MINUS
(SELECT * FROM TABLE(get_rdf(*V_ Student”))
UNION
(SELECT * FROM TABLE(get__rdf(*V__friendOf)))

This view definition results in the view 1002 shown in FIG.
10. The unmapped triples view 1002 includes three columns.
A first column 1004 includes the subject value. The second
column 1006 includes the predicate value. The third column
1008 includes the object value. All of the unmapped triples
are mapped into this view 1002.

FIG. 9B shows an alternate approach that can be taken to
address the unmapped triples. This approach uses rules (e.g.,
user-defined rules) to infer classes and/or properties from the
RDF data. The RDF data would be augmented with new
triples (e.g., “s rdfitype :class” triples) to correspond with the
new classes that are inferred in the RDF data.

At 910, one or more rules are created for the new classes/
properties. In some embodiments, this action is performed by
creating a new model (RDF dataset) corresponding to the
unmapped triples that were previously identified. Property
groups may then be identified or specified by the user. For
subjects having a property group, a SPARQL pattern based
user-defined rule is introduced, e.g., having the following
form:

US 9,098,566 B2

9

(7s ?7p1 201 . 75 7p2 202 . ?s p5 ?05)=>(?s rdf:type :class)

Entailments are created for this new rule. Thereafter, at
912, the RDF data is augmented with the new triples, e.g.,
automatically based on the entailments. Since the RDF data
now includes “rdf:type” statements for these new classes, the
above-described approach can then be used at 914 to generate
view definitions for these classes.

To illustrate, consider the set 1124 of unmapped RDF
triples shown in FIG. 11. The distinct properties for these
unmapped triples 1124 are “:worksFor” and “:hasPosition”.
Therefore, one possible rule that can be suggested for this set
1124 of unmapped triples is rule 1102. Rule 1102 essentially
states that a subject that corresponds to the “works for” prop-
erty that identifies an employer, and which holds a position
defined by the “hasposition” property, should therefore be
considered to be in an “Employee” class.

As such, an entailment can be created for this rule 1102,
which can be used to augment the RDF data 200 with the
following new RDF triples:

:Mike rdfitype :Employee
:Lisa rdfitype :Employee

These RDF triples can be added to the RDF data 200, as
shown in revised RDF data 1104, which now includes the new
triples 1106. Now, the process that was previously discussed
to perform mappings using the “rdfitype” predicate can be
re-initiated to create a new Employees view 1202 as shown in
FIG. 12 for this new Employee class. The “Worksfor” and
“hasPosition” properties are mapped as properties/columns
in this new view 1202.

The approach FIG. 9B may be performed, for example, if
certain quality measurements indicate that the transformation
efficiency using the approach of FIG. 9A is insufficient. A
transformation factor may be used to measure the transfor-
mation efficiency of the above-described RDF-to-relational
transformations. The transformation factor according to some
embodiments identifies the portion of triples that are covered
by the relational views that have been created. The transfor-
mation factor may be defined in some embodiments using the
following formula:

(Number of Triples Covered by Relational Views)/
(Total Number of Triples)

In the approach illustrated in FIG. 2, it can be seen that the
RDF data includes a total of eleven RDF triples. However,
only seven of those RDF triples are covered by the relational
views 202 and 204 (i.e., triples 210, 212, 214, 216, 218, 220,
and 222). The four RDF views identified as 224 are not
covered by the relational views 202 and 204. Therefore, the
transformation factor for the example of FIG. 2 is (11-4)/
11=7/11 or 0.63. This means that 63.63% of the RDF triples
in RDF data 200 are covered by the relational views 202 and
204.

Another possible measure of the quality of the transforma-
tions is check for the amount of NULL values that have been
inserted into the relational views. The idea is that if the cre-
ated views are unduly filled with NULL values, then this
indicates a possible lack of efficiency for the way the trans-
formation has occurred. In some embodiments, this factor
(referred to herein as the Null presence factor) is defined
using the following formula:

(Number of Nulls in Views)/(Total number of Cells in
Views)

In the approach illustrated in FIG. 2, it can be seen that the
RDF data includes only a single NULL value, i.e., in row 254

10

15

20

25

30

35

40

45

55

60

65

10

of view 202. There are a total of ten cells in the combined two
views 202 and 204. Therefore, the Null presence factor for the
example of FIG. 2 is V10 or 10%.

Of course, it should be clear that any suitable transforma-
tion factor may be employed to measure the quality of the
transformations, and such transformation factors are not lim-
ited to just the specific embodiments described above accord-
ing to certain embodiments of the invention.

In some embodiments, the choice of whether to use the
approach of placing all unmapped triples into a single
unmapped triples view (e.g., the approach of FIG. 9A) or to
use an approach to attempt to map the unmapped triples (e.g.,
the approach of FIG. 9B) may be determined using the trans-
formation factor(s). For example, if the transformation factor
is measured to be less than a specified threshold (e.g., 0.7),
then the embodiments can be configured to undergo the pro-
cess using a rules-based approach to map the unmapped
triples.

Assume that the approach of FIG. 9B is implemented after
it was determined that the transformation factor of the results
shown in FIG. 2 is too low (e.g., the transformation factor 0.63
of FIG. 2 is less than the threshold 0of 0.7). This may cause the
approach of FIG. 9B to be implemented, which results in the
additional view 1202 of FIG. 12 to be created. At this point,
the transformation factor changes, since all 13 of the RDF
triples in RDF data 1104 of FIG. 11 are covered by the views
202,204, and 1202. This means that the transformation factor
(13-0)/13=13/13 or 1.0. As such, the transformation factor of
1.0 now significantly improved, and currently exceeds the
above-stated threshold value for this factor.

In some embodiment, ID-based relational views can be
utilized, which could be suitable for example, with respect to
analytics where user is typically interested in counts of things
in various categories as opposed to lexical values. The basis
for this embodiment is that certain systems implement RDF
databases using formats such that the RDF data is associated
with identifier numbers. For example, the approach described
in U.S. Patent Publication 20100036862 stores lexical value
based RDF triples data as a set of two tables, in which a first
table includes the triples values and a second table includes
the lexical values. In general, if a view has K columns, the
lexical value-based view would require K self-joins on first
triples table plus K joins with second lexical values table,
whereas the ID-based view would require only K self-joins on
first triples table and can altogether avoid joins with the sec-
ond lexical values table.

Therefore, what has been described is a novel approach for
presenting RDF data as relational view(s). The ability to
present RDF data sets as relational views will enable publish-
ing and reporting of RDF data with existing relational tools
and will support high performance RDF queries through
identification of relational views of RDF data that should be
materialized. This is a very significant benefit, particularly as
more and more organizations are creating RDF/OWL reposi-
tories for their data.

The declarative approach presented here scales well to
handle large RDF data sets. In addition, ID-based views can
be utilized to provide orders of magnitude improvement in
performance, e.g., when only counts are of importance, which
is often the case with analytics.

System Architecture Overview

FIG. 13 is a block diagram of an illustrative computing
system 1400 suitable for implementing an embodiment of the
present invention. Computer system 1400 includes a bus 1406
or other communication mechanism for communicating
information, which interconnects subsystems and devices,
such as processor 1407, system memory 1408 (e.g., RAM),

US 9,098,566 B2

11
static storage device 1409 (e.g., ROM), disk drive 1410 (e.g.,
magnetic or optical), communication interface 1414 (e.g.,
modem or Ethernet card), display 1411 (e.g., CRT or LCD),
input device 1412 (e.g., keyboard), and cursor control.

According to one embodiment of the invention, computer
system 1400 performs specific operations by processor 1407
executing one or more sequences of one or more instructions
contained in system memory 1408. Such instructions may be
read into system memory 1408 from another computer read-
able/usable medium, such as static storage device 1409 or
disk drive 1410. In alternative embodiments, hard-wired cir-
cuitry may be used in place of or in combination with soft-
ware instructions to implement the invention. Thus, embodi-
ments of the invention are not limited to any specific
combination of hardware circuitry and/or software. In one
embodiment, the term “logic” shall mean any combination of
software or hardware that is used to implement all or part of
the invention.

The term “computer readable medium” or “computer
usable medium” as used herein refers to any medium that
participates in providing instructions to processor 1407 for
execution. Such a medium may take many forms, including
but not limited to, non-volatile media and volatile media.
Non-volatile media includes, for example, optical or mag-
netic disks, such as disk drive 1410. Volatile media includes
dynamic memory, such as system memory 1408.

Common forms of computer readable media includes, for
example, floppy disk, flexible disk, hard disk, magnetic tape,
any other magnetic medium, CD-ROM, any other optical
medium, punch cards, paper tape, any other physical medium
with patterns of holes, RAM, PROM, EPROM, FLASH-
EPROM, any other memory chip or cartridge, or any other
medium from which a computer can read.

In an embodiment of the invention, execution of the
sequences of instructions to practice the invention is per-
formed by a single computer system 1400. According to other
embodiments of the invention, two or more computer systems
1400 coupled by communication link 1415 (e.g., LAN,
PTSN, or wireless network) may perform the sequence of
instructions required to practice the invention in coordination
with one another.

Computer system 1400 may transmit and receive mes-
sages, data, and instructions, including program, i.e., appli-
cation code, through communication link 1415 and commu-
nication interface 1414. Received program code may be
executed by processor 1407 as it is received, and/or stored in
disk drive 1410, or other non-volatile storage for later execu-
tion.

In the foregoing specification, the invention has been
described with reference to specific embodiments thereof. It
will, however, be evident that various modifications and
changes may be made thereto without departing from the
broader spirit and scope of the invention. For example, the
above-described process flows are described with reference
to a particular ordering of process actions. However, the
ordering of many of the described process actions may be
changed without affecting the scope or operation of the inven-
tion. The specification and drawings are, accordingly, to be
regarded in an illustrative rather than restrictive sense.

What is claimed is:

1. A computer implemented method for implementing
relational views from RDF data using a processor, compris-
ing:

20

35

40

45

50

65

12

identifying a class from a class identifier in RDF data;

identifying information for two or more properties relating

to a subject of the class, wherein the two or more prop-
erties comprises a single-value property and a multi-
value property;

creating a first view definition for the class from the RDF

data, where the first view definition corresponds to a first
relational view of the RDF data that maps the single-
value property; and

creating a second view definition for property information

corresponding to the multi-value property from the RDF
data, where the second view definition corresponds to a
second relational view of the RDF data that maps the
multi-value property, wherein the second relational view
is populated with multi-value property objects of the
subject in the first relational view.

2. The method of claim 1 in which a SPARQL query is
employed to identify the class or the property information
from the RDF data.

3. The method of claim 1 in which a table function is
employed to use a SPARQL query in conjunction with a SQL
statement.

4. The method of claim 1 in which metadata is created to
identify the class or property information.

5. The method of claim 1 in which the view definition is
used to generate a view that is accessed by a relational data-
base tool.

6. The method of claim 1 in which the view definition is
used to export RDF-based relational data to a relational data-
base.

7. The method of claim 1 in which each identified class
corresponds to a separate view.

8. The method of claim 1 in which the single-valued prop-
erty is mapped to a class view and the multi-valued property
is mapped to a multi-valued view.

9. The method of claim 1 in which an unmapped RDF triple
is mapped to an unmapped triples view.

10. The method of claim 1 in which an unmapped RDF
triple is analyzed to create an additional RDF triple for the
RDF data, in which the additional RDF triple is used to map
a class view.

11. The method of claim 10 in which a rule is created to
implement creation of the additional RDF triple.

12. The method of claim 1 in which analysis is performed
to measure quality of view definitions.

13. The method of claim 12 in which a transformation
factor is employed to measure the quality of the view defini-
tions by measuring relative amounts of RDF triples that are or
are not mapped to the relational views.

14. The method of claim 12 in which a null presence factor
is employed to measure the quality of the view definitions by
measuring relative amounts of null values in the relational
views.

15. The method of claim 12 in which the analysis to mea-
sure the quality is performed to determine whether to increase
mappings of unmapped RDF triples.

16. A computer program product embodied on a non-tran-
sitory computer usable medium, the computer usable
medium having stored thereon a sequence of instructions
which, when executed by a processor causes the processor to
execute a method for implementing relational views from
RDF data, the method comprising:

identifying a class from a class identifier in RDF data

identifying information for two or more properties relating

to a subject of the class, wherein the two or more prop-
erties comprises a single-value property and a multi-
value property;

US 9,098,566 B2

13

creating a first view definition for the class from the RDF
data, where the first view definition corresponds to a first
relational view of the RDF data that maps the single-
value property; and

creating a second view definition for property information
corresponding to the multi-value property from the RDF
data, where the second view definition corresponds to a
second relational view of the RDF data that maps the
multi-value property, wherein the second relational view
is populated with multi-value property objects of the
subject in the first relational view.

17. The computer program product of claim 16 in which a
SPARQL query is employed to identify the class or the prop-
erty information from the RDF data.

18. The computer program product of claim 16 in which a
table function is employed to use a SPARQL query in con-
junction with a SQL statement.

19. The computer program product of claim 16 in which
metadata is created to identify the class or property informa-
tion.

20. The computer program product of claim 16 in which the
view definition is used to generate a view that is accessed by
a relational database tool or in which the view definition is
used to export RDF-based relational data to a relational data-
base.

21. The computer program product of claim 16 in which
each identified class corresponds to a separate view.

22. The computer program product of claim 16 in which the
single-valued property is mapped to a class view and the
multi-valued property is mapped to a multi-valued view.

23. The computer program product of claim 16 in which an
unmapped RDF triple is mapped to an unmapped triples view
or in which the unmapped RDF triple is analyzed to create an
additional RDF triple for the RDF data, in which the addi-
tional RDF triple is used to map a class view.

24. The computer program product of claim 23 in which a
rule is created to implement creation of the additional RDF
triple.

25. The computer program product of claim 16 in which
analysis is performed to measure quality of view definitions.

26. The computer program product of claim 25 in which a
transformation factor is employed to measure the quality of
the view definitions by measuring relative amounts of RDF
triples that are or are not mapped to the relational views.

27. The computer program product of claim 25 in which a
null presence factor is employed to measure the quality of the
view definitions by measuring relative amounts of null values
in the relational views.

28. The computer program product of claim 25 in which the
analysis to measure the quality is performed to determine
whether to increase mappings of unmapped RDF triples.

29. A computer-based system for implementing relational
views from RDF data, comprising:

a computer processor to execute a set of program code

instructions;

a memory to hold the program code instructions, in which
the program code instructions comprises program code
to identify a class from a class identifier in RDF data,
identify information for two or more properties relating
to a subject of the class, wherein the two or more prop-
erties comprises a single-value property and a multi-

5

10

15

20

25

30

35

40

45

50

55

60

14

value property, create a first view definition for the class
from the RDF data, where the first view definition cor-
responds to a first relational view of the RDF data that
maps the single-value property, and create a second view
definition for property information corresponding to the
multi-value property from the RDF data, where the sec-
ond view definition corresponds to a second relational
view of the RDF data that maps the multi-value property,
wherein the second relational view is populated with
multi-value property objects of the subject in the first
relational view.

30. The computer-based system of claim 29 in which the
program code instructions further comprises program code to
employ a SPARQL query to identify the class or the property
information from the RDF data.

31. The computer-based system of claim 29 in which the
program code instructions further comprises program code to
employ a table function to use a SPARQL query in conjunc-
tion with a SQL statement.

32. The computer-based system of claim 29 in which the
program code instructions further comprises program code to
create metadata to identify the class or property information.

33. The computer-based system of claim 29 in which the
program code instructions further comprises program code to
use the view definition to generate a view that is accessed by
a relational database tool or in which the view definition is
used to export RDF-based relational data to a relational data-
base.

34. The computer-based system of claim 29 in which each
identified class corresponds to a separate view.

35. The computer-based system of claim 29 in which the
single-valued property is mapped to a class view and the
multi-valued property is mapped to a multi-valued view.

36. The computer-based system of claim 29 in which the
program code instructions further comprises program code to
map an unmapped RDF triple to an unmapped triples view or
to analyze the unmapped RDF triple to create an additional
RDF triple for the RDF data, in which the additional RDF
triple is used to map a class view.

37. The computer-based system of claim 36 in which the
program code instructions further comprises program code to
create a rule to implement creation of the additional RDF
triple.

38. The computer-based system of claim 29 in which the
program code instructions further comprises program code to
perform analysis to measure quality of view definitions.

39. The computer-based system of claim 38 in which the
program code instructions further comprises program code to
employ a transformation factor to measure the quality of the
view definitions by measuring relative amounts of RDF
triples that are or are not mapped to the relational views.

40. The computer-based system of claim 38 in which the
program code instructions further comprises program code to
employ a null presence factor to measure the quality of the
view definitions by measuring relative amounts of null values
in the relational views.

41. The computer-based system of claim 38 in which the
program code instructions further comprises program code to
perform the analysis to measure the quality to determine
whether to increase mappings of unmapped RDF triples.

#* #* #* #* #*

